The revitalization of Whittier Hall will reach its completion this spring and will signal an exciting transition as MATC, along with the NTC, move into the renovated building. This relocation will mean that all of the components of the Nebraska Transportation Center will be housed under one roof. With 22,000 square feet allocated for research and office space, faculty and students will be joined in an atmosphere that will allow greater opportunities for research and collaboration. State-of-the-art facilities and greater research space will help MATC and the NTC reach their goal of becoming national leaders in transportation safety and advanced research.

Whittier Hall, located at 22nd and W streets, is the first building in the United States constructed for the specific purpose of serving as a junior high school. Many of the original structures, dating to the building’s completion in 1923, have been maintained during the renovation. In fact, much effort has been expended to maintain and revitalize the building while enhancing energy efficiency by the installation of modern components.

Student Spotlights

Lucy Munz:
Lucy Munz is a senior in Civil Engineering at the University of Kansas. She has worked as a semester intern at the Kansas Department of Transportation (KDOT) in the Road Design Section for two years. In this position she works under Eric Nichol, P.E. in James Diezgel P.E.’s squad. Mr. Nichols is also the President of the Younger Members group for ASCE in

Brandon Bortz:
Brandon Bortz is a teaching assistant and graduate student in the Civil Engineering Department at Kansas State University. Brandon graduated from K-State with a Bachelor’s degree in Civil Engineering in December of 2008. While maintaining a vigorous research schedule, he will complete his coursework work in December 2009 and with a G.P.A of 3.6. In May 2010,
IRF Essay Competition Winner, Jeff Thiele

Congratulations to Civil Engineering graduate student, Jeff Thiele, one of the five winners of the International Road Federation’s annual student essay competition. An international panel of judges evaluated essays submitted under five separate categories, and Jeff Thiele’s essay won for the “Innovative Financing” group. Thiele responded to his achievement, “I was completely surprised. I’m very thankful to the International Road Federation for this award, and I’m honored that my essay was selected as a winner.”

In April of 2009, LOCATE (Lincoln, Omaha, Council-Bluffs Association of Traffic Engineers) was presented with the Governor’s Transportation Safety Challenge Special Recognition Award for reducing the fatality rate for young drivers. Dr. Aemal Khatrask serves as the director of education on the LOCATE board.

Full Research Assistantships to 78 students. We’ve had significant work accomplished at all of our partner schools and in each state in Region VIII. I had the privilege of meeting many of these students during January’s Transportation Research Board Meeting in Washington, D.C., and was amazed at the breadth of their interests and the diversity of their backgrounds. As these capable, creative students graduate and begin their transportation careers, I am confident they will be fantastic ambassadors for the Mid-America Transportation Center.

I would also like to take this opportunity to introduce you to the new home of MATC headquarters—the newly renovated Whittier Building—which is a former Lincoln Junior High School that was built in 1926. UNL has spent $20 million dollars in the past 2 years renovating the space so that it can be used for multi-disciplinary research at UNL, with transportation research as its primary focus. Of the 20,000 square feet of usable space, 22,000 sq ft will house MATC and the Nebraska Transportation Center. The space will include an Intelligent Transportation Systems laboratory with over 2000 ft2 in addition to a 2500 ft2 visualization laboratory. Needless to say, this is a great indication of the UNL administration’s commitment to transportation research and education— as well as being an example of the partnership between UNL and the USDOT that the UTC program was designed to foster. Everyone involved in the fruition of this dream is deeply appreciative of the exceptional facilities that will soon be available at Whittier Hall. After our move in April 2010, we look forward to welcoming you to our new home.

I am always deeply appreciative of the hard work done by our faculty, students and staff across all the consortium partners—as I am confident you will see their dedication and hard work in the articles highlighted in this newsletter. We are optimistically preparing for the next transportation authorization bill that in the coming months will determine whether the competitive USDOT University Transportation Center program will continue and, if so, in what form. As always, I welcome your feedback and suggestions. Thank you for your interest and continued support.

Sincerely,
Larry
The MATC Transportation Engineering Seminar was taught this past fall by Dr. Riett with the stated purposes of introducing graduate level transportation engineering students to everyday issues in the profession that standard coursework may not address. To this end, a professional from a specific division of transportation engineering was scheduled to lecture each week. The lecture series benefited faculty and students in the transportation field generally, as these events were open for all to attend.

Lecturers represented different sectors of the discipline including private, public, and academic spheres.

Joe Werning, Division Administrator, FHWA, NE
Justice Appiah, IITC Post-Doctoral Engineer, UNL
Mike Malone, Vice President-Heartland Region, ITRAS, IA
Virginia Baldwin, Professor of Library Science, UNL
Cindy Newsham, Response and Recovery Division Manager, NBMA
John R. LaRandeau, Inland Navigation Program Manager, Army Corps of Engineers
Enzo E. Sololiki, Traffic Signal Engineer, City of Lincoln
Qizhou Shi, Professor, Tongji University, China
Anuj Sharma, Assistant Professor, UNL

Class time was also scheduled to facilitate the students’ attendance of a Valmont Industries Incorporated’s testing facility tour in October, as well as the Omaha-Council Bluffs Traffic Forum and the Nebraska Highway Commission Meeting in November. When asked about his experience in this course, graduate assistant Nathaniel Burnett replied: “as the field of transportation continues to grow, possessing a thorough knowledge of concerns and problems throughout transportation is imperative. MATC’s Transportation Seminar offered students the unique opportunity of learning about the various sectors of transportation.”

The University of Iowa offers a Transportation Planning Course.

The course examined the state of the art in freight transportation planning in the US with emphasis on surface modes, primarily railway, maritime (especially ports), and trucking. Policy, planning, and practices of European models were examined in conjunction with recent U.S. planning examples.

The Freight Transportation Planning course has been structured so that, initially, students are provided with a background of the U.S. surface freight system through an explanation of the modal characteristics and modal markets, including competitive boundaries and areas of cooperation. Then, the course content shifts to current public sector planning, laws and regulations, financing information, freight planning methodologies and sample plans. These six primary sections of the course are further subdivided into more detailed content. For instance, the freight planning methodologies section examines public planning processes, modal trade-offs, and freight demand models.

The course focused on the growing need to expand and restructure the U.S. freight transportation system due to the globalization of production practices and steep increases in commodity prices. The recent economic downturn aside, urgent issues such as urban traffic congestion and air quality degradation, as well as rapidly rising fuel costs, are constraining the freight transportation sector. Though individual European countries and the E.U. have begun addressing these issues, U.S. freight transportation planning has been dealing with this growth in a piecemeal and ad hoc way, complicated by the fact that freight planning tools are lagging and there are serious data availability and finance issues to overcome. Moreover, freight and passenger transport interactions and trade-offs are not integrated within most urban or state transportation plans.

The MATC Transportation Engineering Seminar is available online through distance learning. The course is a one-semester course in Freight Transportation Planning and is offered on a trial basis at the UI campus. Consideration is being given to making the course available through distance learning mechanisms at universities affiliated with the Mid America Transportation Center. The course focused on the growing need to expand and restructure the U.S. freight transportation system due to the globalization of production practices and steep increases in commodity prices. The recent economic downturn aside, urgent issues such as urban traffic congestion and air quality degradation, as well as rapidly rising fuel costs, are constraining the freight transportation sector. Though individual European countries and the E.U. have begun addressing these issues, U.S. freight transportation planning has been dealing with this growth in a piecemeal and ad hoc way, complicated by the fact that freight planning tools are lagging and there are serious data availability and finance issues to overcome. Moreover, freight and passenger transport interactions and trade-offs are not integrated within most urban or state transportation plans.

University of Iowa Freight Transportation Planning Course

Dr. John W. Fuller and Barton Cramer of the University of Iowa have organized a one-semester course in Freight Transportation Planning and offered it on a trial basis at the UI campus. Consideration is being given to making the course available through distance learning mechanisms at universities affiliated with the Mid America Transportation Center. The course focused on the growing need to expand and restructure the U.S. freight transportation system due to the globalization of production practices and steep increases in commodity prices. The recent economic downturn aside, urgent issues such as urban traffic congestion and air quality degradation, as well as rapidly rising fuel costs, are constraining the freight transportation sector. Though individual European countries and the E.U. have begun addressing these issues, U.S. freight transportation planning has been dealing with this growth in a piecemeal and ad hoc way, complicated by the fact that freight planning tools are lagging and there are serious data availability and finance issues to overcome. Moreover, freight and passenger transport interactions and trade-offs are not integrated within most urban or state transportation plans.

University of Iowa Freight Transportation Planning Course

The course examined the state of the art in freight transportation planning in the US with emphasis on surface modes, primarily railway, maritime (especially ports), and trucking. Policy, planning, and practices of European models were examined in conjunction with recent U.S. planning examples.

The Freight Transportation Planning course has been structured so that, initially, students are provided with a background of the U.S. surface freight system through an explanation of the modal characteristics and modal markets, including competitive boundaries and areas of cooperation. Then, the course content shifts to current public sector planning, laws and regulations, financing information, freight planning methodologies and sample plans. These six primary sections of the course are further subdivided into more detailed content. For instance, the freight planning methodologies section examines public planning processes, modal trade-offs, and freight demand models.

The course focused on the growing need to expand and restructure the U.S. freight transportation system due to the globalization of production practices and steep increases in commodity prices. The recent economic downturn aside, urgent issues such as urban traffic congestion and air quality degradation, as well as rapidly rising fuel costs, are constraining the freight transportation sector. Though individual European countries and the E.U. have begun addressing these issues, U.S. freight transportation planning has been dealing with this growth in a piecemeal and ad hoc way, complicated by the fact that freight planning tools are lagging and there are serious data availability and finance issues to overcome. Moreover, freight and passenger transport interactions and trade-offs are not integrated within most urban or state transportation plans.
Missouri S&T Intern Program

For the past few years, the Missouri Department of Transportation (MoDOT) and Mid-America Transportation Center (a Missouri S&T Partner) have been working in conjunction to develop a recruiting plan that will encourage undergraduate students to seek employment with MoDot after graduation. With this aim in mind, MoDOT and MATC are offering a competitive financial package for students at the Missouri University of Science and Technology (Missouri S&T) which will include a summer internship and hourly pay from MoDOT. As an additional incentive, each student will receive a $1,000 scholarship from MATC over the funding period. In order to locate interested candidates, MoDOT will review all applications received from perspective students and select summer internships based on various needs from MoDOT districts. Following the summer internship, students will be expected to compose a one-page report that will include a brief description of the projects they were involved in during the internship, an explanation of their role in each project, and an evaluation of the internship program. Once finalized, this report will be submitted to the MATC Associate Director at Missouri S&T. MATC will award up to 15 scholarships to selected students upon their completion of the internship and submission of the final report.

For more information contact Genda Chen at gchen@mst.edu or call (573) 341-4462

MATC UNL Undergraduate Summer Intern Program

The Mid-America Transportation Center Undergraduate Summer Intern Program provides undergraduate students the opportunity to learn more about transportation engineering careers by working for a transportation engineering consulting firm or public transportation agency. The internship includes an intern-sponsor orientation luncheon, an expense-paid field trip to transportation-related facilities within the Midwest region and a recognition luncheon on the last day of the internship. Room, board and travel expenses to sponsors’ work sites are not provided by this program unless specifically stated. Interns work for a sponsor, located in the Midwest region, for the summer months and participate in program events during the internship period. Positions are available in (but not limited to) the following sectors: roadway design, traffic engineering, intelligent transportation systems, railway design, planning, and transportation research. Interns will be matched with sponsors based upon their qualifications, interests, character, workplace location, and position availability. Interns will work a minimum of 40-hours per week for their assigned sponsor.

The program is open to any currently enrolled civil engineering junior (33 credit hours completed by May 2010) or senior at UNL, UNO, University of Iowa, Kansas State University, University of Kansas, and Missouri University of Science and Technology. Applicants must be considering a career in transportation engineering and have completed Highway Engineering, CIVE 361, at UNL or UNO, or the entry-level transportation course at MATC member institutions. Students that will graduate before December 2010 are ineligible. Only US citizens are eligible to apply. For more information please visit http://matc.unl.edu/internship.php or contact Valerie Lefler at vlefler2@unl.edu.

University Student Spotlights

...continued from page 1

Lucy Munz: KU MATC Student Spotlight

the Kansas Section and encouraged Lucy to become involved. Through this mentorship, Lucy is currently involved in this ASCE group and is meeting people in her field. Among the many opportunities that this internship has provided, Lucy has learned about pipe sizing, making estimates for projects, designing pavement, running earthwork quantities, cutting profiles and cross-sections. Moreover, Lucy feels that her supervisor always tries to give her meaningful work that will expand her knowledge base. Of her internship she writes, “I am very grateful to KDOT for all the experience and knowledge that this job position has allowed. I have more practical experience than most seniors my age and this that makes me very marketable candidate. KDOT is a great working environment and I look forward to becoming a full-time employee.”

Brandon Bortz: KSU MATC Student Spotlight

Brandon plans to graduate with his Master’s degree and wants to continue his education by pursuing a Ph.D. Meanwhile, he is finishing his research on the durability of concrete containing fly ash and has completed the majority of this project in less than a year. Brandon’s project has two main activities. The first is laboratory testing in which he conducts salt scaling according to the ASTM C 672. For this part of his research, seventy-eight specimens that weigh approximately thirty pounds must be moved twice a day. The second part of his project is the construction of a durability site and specimens at CISR. With only a small budget for his project, he is ever-inventive in the processes he develops to complete his research.

The MATC newsletter Issue 3.2 will feature student spotlights from UI and MS&T.
Best field trip ever
Lincoln Northeast High School Students visit NTC & MATC

Janet Emery & Adell Stiles
Teachers from Lincoln Northeast

"Best field trip ever" was the reaction of Lincoln Northeast High School students after spending the day at NTC and MATC. Students easily picked the crash track test site and the speed guns as their favorite parts of the tour. It was a great way to excite the students and set the tone for the rest of the day. It was "real cool" for the students to stand outside Nebraska Hall with the speed guns. They were amazed at all the details involved in creating red-light stop times. Students were surprised that drivers slowed down when they pointed the speed gun toward the car.

Engineers at the track were excellent in their manner of presentation by reinforcing that math and science are used daily in their field. Truth and error processes, as explained by the engineers, gave the students a realistic picture regarding the invention of the NASCAR safety bumper.

Donnie Butler’s explanation at the ITS Detection lab intrigued the students. Because LNE students are familiar with the 35/Adams Street intersection, the data collected by the three real-time cameras was meaningful. Students were impressed by the process used to create solutions to the two problems being studied at that intersection. Moreover, Dr. Anuj Sharma’s first-rate presentation helped the students realize the broad job opportunities available with a civil engineering degree.

"It was great to have a quiz" was the comment from many students as the day ended with a friendly competition among four groups of students. They all wanted to win a T-shirt and water bottle. At the end of the day, students and teachers alike felt it was an extremely successful field trip.

Bhaven Naik
Graduate Student

“My presentation illustrated how transportation engineers conduct spot speed studies using Ladar guns. The students had the opportunity to conduct a simple spot speed study using the Ladar guns. After this demonstration, I explained that the speeds they collected could be used for defining the posted speed limits on the highways, timing traffic signals or as input for micro-simulation models. They were also introduced to other traffic data collection devices such as loop detectors, video recording, and the simple stop watch. The use of the video and loop detection devices interested the students the most. This is partially because they encounter these mechanisms every day, but mainly due to the students’ unawareness of the equipment’s purpose.”

Walter Moy
Graduate Research Assistant

“At the MATC tour, I presented on Geographical Information System (GIS) software. This program enables the user to assign information to a line or shape which is then displayed according to the specifications. Everyday uses for this software include map production and programs, such as Google Earth. During my presentation I explained the basics of the program, and allowed time for the students to explore it themselves. The presentation I explained the basics of the program, and allowed time for the students to explore it themselves. The students made different kinds of maps and, overall, I think that they enjoyed their time learning about GIS software.”

Justice Appiah & Chung-Jen Hsu “CJ”
Research Assistants

“We spoke about the traffic micro-simulation model, VISSIM and how it is used at UNL and institutions across the nation to analyze many complex transportation problems. One of the projects we discussed was the development of a state-of-the-art traffic micro-simulation model of the I-80 freeway between Lincoln and Omaha. When completed, this model can be used to predict the likely impact of changes in traffic patterns resulting from modifications in traffic flow (such as on game days) or from alterations to the physical environment (such as lane closures). The ability to predict or anticipate these potential impacts means engineers, planners, and policy makers can proactively develop, test, and implement possible remedies. The students were particularly impressed with the potential cost savings and the safety implications of these projects—some even expressed interest in pursuing a career in transportation.”

Donnie Butler
Graduate Research Assistant

“Of the many aspects of transportation engineering, my presentation at the MATC tour focused on traffic detection systems. The students listened attentively as I presented the origins and types of vehicle detection devices. We discussed some example applications of video detection systems, as well as the associated benefits and disadvantages. For instance, I showed the students the City of Lincoln website and explained that they can use traffic cameras, accessible at this site, to check traffic congestion and determine the best driving route. The students particularly enjoyed the futuristic application opportunities of video detection, such as vehicles that can detect other vehicles and respond by slowing down or stopping to prevent an accident.”

Mid-American Transportation Center | www.matc.ne.gov
MATC Seminar Tours the Valmont Manufacturing Plant

On October 30th, the MATC Seminar joined with UNL’s Institute of Transportation Engineers (ITE) student chapter and the Lincoln- Omaha Council Bluffs Association of Transportation Engineers (LOCiB) in a tour of the manufacturing facility for Valmont Industries, Inc. Located near Valley, Nebraska, Valmont Industries manufactures engineered support structures, utility poles and structures, tubing, and irrigation structures. In addition to such manufactures, Valmont Industries also provides various metal coating services. During the tour, participants were able to observe some coating. When the steel encountered the hot zinc air pockets were heated rapidly—creating violent explosions of molten zinc from the bath. In response to such dangers, the safety precautions in place to protect technicians and visitors were quite extensive.

After the tour was completed, a short discussion was given by a structural engineer about Valmont’s onsite testing facility. He discussed the structural concerns with the poles and support structures manufactured by Valmont. He introduced the problem of fatigue in pole products through a multi-media presentation. Interestingly, poles can be designed to withstand high velocity winds, but at specific lower velocities fatigue failure can occur relatively early. Our presenter explained the concept of mast arm galloping and natural structural resonance; namely, resonance introduces a situation where a low velocity wind could cause amplification of vibration to the point of fatigue failure in a matter of hours. After discussing the fatigue being conducted on pole resonance, the Valmont representative introduced an innovative patented design that increases the fatigue life of square poles by altering the base section.

Of the various processes observed, the most interesting was the hot-dip galvanizing line. Galvanization is a process by which steel (or other metals) may be coated in a layer of zinc which reacts with oxygen and carbon dioxide in the air to form a compound that protects the underlying steel from corrosion. In the production facility, large steel products were moved by cranes and systematically submerged in a series of (approximately) 30,000 gallon tanks full of various chemical baths to cleanse the surfaces. Finally, they were submerged in molten zinc (800°F) which chemically bonded to the surface to create the corrosion resistant}

ITERIS Donates Video Detection Equipment

MATC would like to extend their gratitude to Iteris, Inc. for their donation of vehicle video detection equipment to the Intelligent Transportation Systems Lab. On September 28, 2009 Mike Malone and Mark Fayta of Iteris, Inc. and Scott Carlson of Brown Traffic Inc. installed the equipment in the Nebraska Transportation Center ITS Lab.

The video detection components donated included a Vantage TSI VRs, a Vantage Edge 2 dual camera input video detection processor, a four channel expansion module for the Edge 2 processor and a Vantage Edge Connect video communication module. Additionally, a vantage video detection camera was installed, as well as the various cables and DVI players required to complete the lab test station. The donated equipment will be used for research and teaching purposes: the video recorded at the test site can be processed to provide valuable information on both microscopic and macroscopic traffic characteristics.

The new equipment donated by Iteris will enhance MATC’s research capabilities. Specifically, Vantage Edge2 processors can be used for data collection applications when loaded with the suitable firmware and with the appropriate camera setup. “Express,” the Vantage data collection firmware, provides accurate count, speed, occupancy, gap, and user defined classifications, among other information. The firmware on the Vantage Edge2 processor module draws detection zones on the camera’s video image and allows a maximum of twenty-four defined detection zones per camera view. To define a detection zone, four corners of an area must be designated on the video screen. The processor module then analyzes the video image to determine when a vehicle is present in a zone. Vehicle detection information is passed to the traffic control equipment for real-time traffic management and control. Video data can also be transmitted via fiber optics, twisted pair, microwave, or radio communication methods to be visually displayed and monitored at a traffic management center.

The new equipment will allow greater connectivity between researchers by creating an integrated system. The Edge Connect Module is designed to stream four channels of video and allow Edge2 processor setup and control over an Ethernet network connection. The Edge Connect’s Ethernet port enables MPEG-4 or H.264 streaming video to be viewed on a personal computer using a widely available internet browser. The module also provides central hub functionality for local Edge2 processors by allowing a monitor connected to the module to access and setup any of four Edge2 processors from a central point.

MATC is excited about the research opportunities that such equipment will afford both teachers and students alike. We extend our sincerest thanks to Iteris, Inc. for their generosity in donating this technology.

KSU Superpave Field Certification

Kansas State University will offer four sessions for Superpave Field Laboratory Technician (SFLT) Certification Training with cooperation from the Kansas Department of Transportation (KDOT) and under the sponsorship of the Mid-America Transportation Center. This course is intended to certify engineers, technicians, and other personnel who will be involved in the construction of Superpave hot-mix asphalt (HMA) pavements using Quality Control and Quality Assurance (QC/QA) specifications in the State of Kansas. Superpave represents an improved system for specifying asphalt binder and mineral aggregates, developing asphalt mixture design, and analyzing establishing pavement performance prediction. This system is expected to extend the life of asphalt pavements—thereby, reducing construction-related congestion and enhancing public safety.

Instruction will be provided by a selected group of instructors from KDOT, KSU, and professionals in the industry. Approximately 80 engineers, technicians and constructors from public and private sectors are expected to attend. Successful completion of the course and certification (subjected to a passing score on a test given at the end of the course) will be required for all KDOT and contractor personnel performing tests on these projects. The following sessions will be included in the course: overview of Superpave volumetric mixture design; asphalt mixture volumetrics; hands-on training in the required tests for Superpave HMA construction; and Superpave mixture data analysis and interpretation as required in the QC/QA special provisions. Class sessions will be held on Kansas State University campus during the 2010 spring semester.

For more information contact Robert Stokes at drbobb@ksu.edu or call (785) 532-1995.
Effect of Freeway Level of Service and Driver Education on Truck Driver’s Stress - Phase I

PI: Dr. Anuj Sharma, Assistant Professor, Civil Engineering, University of Nebraska-Lincoln
Co-PI’s: Dr. Senem Velipasalar, Assistant Professor, University of Nebraska-Lincoln; Mr. David Engler, Project Coordinator, Community College Hastings; Dr. Sanjay Singh, Associate Professor, University of Nebraska Medical Center

DESCRIPTION: This project investigates whether a truck driver’s stress on freeways is a function of variables such as level of service, time of day, weather conditions, and level of driver training. The Highway Capacity Manual uses density to measure the level of service on busy, weaving, and merging sections of freeways. The efficiency of flow can be estimated by calculating the speed of traffic and travel time from density. Yet, there is a need for a methodology to estimate safety as a function of density. By utilizing truck driver’s stress as a model, this study will be able to supply this knowledge. The predicted stress level can be used as a surrogate measure for safety.

A sample set of 50 subjects will be observed under simulated and real-world driving environments for the data collection. The study subjects will include trainees from a six-week truck driving certification course offered by Central Community College’s Truck Driving Program (which hosts more than 100 participants per year). The driver’s stress will be measured using technology such as electrocardiograms (ECG) and physiological markers (such as respiration temperature, posture and blood pressure). The technology used for these measurements will not interfere with the subjects’ ability to perform their role as driver. As this study will focus on driver’s stress in local areas, a second phase for this proposal will be submitted next year to evaluate truck driver stress in urban street settings. Partial support for this proposal comes from Layman Award endowed on Dr. Anuj Sharma and Dr. Senem Velipasalar, by the University of Nebraska Lincoln to produce prominent scholarly work.

BENEFITS: The model of truck driver stress levels for this project can be applied as a measure of safety for improving the traffic facility design.

Heavy Vehicle Adjustment Factors for High Percentages of Trucks

PI: Dr. Elizabeth Jones, Associate Professor, University of Nebraska-Lincoln

DESCRIPTION: The most common reference for analyzing the operational characteristics of multilane highways and freeways is the Highway Capacity Manual (HCM). The general procedure used by the 2000 HCM to account for heavy vehicles is to use a heavy vehicle adjustment factor that converts heavy vehicles to passenger-car equivalents. In this manual, this heavy vehicle adjustment factor, HVE, is independent of the percentage of heavy vehicles for extended highway and freeway segments. It varies by percent of heavy vehicles for specific grades, but the tables in the 2000 HCM only provide analysis guidance for heavy vehicle percentages of 25% or less. Nebraska’s highways carry a significant portion of heavy vehicle traffic, so the current methods for analyzing the impact of heavy vehicles on traffic flow and operational characteristics are not adequate. This project will measure the level of service on basic, weaving, and merging sections of freeways. The efficiency of flow can be estimated by calculating the speed of traffic and travel time from density. Yet, there is a need for a methodology to estimate safety as a function of density. By utilizing truck driver’s stress as a model, this study will be able to supply this knowledge. The predicted stress level can be used as a surrogate measure for safety.

A sample set of 50 subjects will be observed under simulated and real-world driving environments for the data collection. The study subjects will include trainees from a six-week truck driving certification course offered by Central Community College’s Truck Driving Program (which hosts more than 100 participants per year). The driver’s stress will be measured using technology such as electrocardiograms (ECG) and physiological markers (such as respiration temperature, posture and blood pressure). The technology used for these measurements will not interfere with the subjects’ ability to perform their role as driver. As this study will focus on driver’s stress in local areas, a second phase for this proposal will be submitted next year to evaluate truck driver stress in urban street settings. Partial support for this proposal comes from Layman Award endowed on Dr. Anuj Sharma and Dr. Senem Velipasalar, by the University of Nebraska Lincoln to produce prominent scholarly work.

BENEFITS: The proposed effort will provide a better understanding of the effects of heavy-load trucks on the overall structural performance and life of pavements in Region 7. In addition, more appropriate use and future advancements of the current PMPG for pavement analysis and design can be achieved based on proper incorporation with mechanistic approaches.

Reducing Impact of Heavy Truck Traffic on Service Life of Bridge Structures

PI: Dr. Alzore Zaitmarzani, Endowed University Professor, University of Nebraska-Lincoln

DESCRIPTION: Heavy truck traffic increases expansion joints and pushes debris into the joints causing extensive damages. This study envisions an innovative system that will completely eliminate expansion joints.

Impact of Truck Loading on Design and Analysis of Asphaltic Pavement Structures – Phase II

PI: Dr. Yong-Rak Kim, Assistant Professor, University of Nebraska-Lincoln

DESCRIPTION: Trucking is the dominant mode of transportation for U.S. freight, and is expected to grow significantly in the future. Better preservation of existing roadways against heavy-load trucks is therefore crucial, and success in this aim necessitates a more accurate and realistic analysis of pavement structures. To this end, a research project led by the PI was initiated in FY 2009 to investigate pavement performance predictions, and particularly focused on the impact of heavy truck loading on pavement damage. Both the newly-revised “Mechanistic-Empirical Pavement Design Guide” approach, or MEPDG, and the “purely mechanistic approach based on the Finite Element Method”, or FEM were used as guides for this study. Preliminary outcomes and significant findings during the FY 2009 necessitate this effort being continued, and this “Phase II” research with extended work scope is herein proposed. Phase II will specifically focus on the effects of truck-loading configurations and constitutive materials behavior on actual pavement structural responses.

BENEFITS: The proposed effort will provide a better understanding of the effects of heavy-load trucks on the overall structural performance and life of pavements in Region 7. In addition, more appropriate use and future advancements of the current PMPG for pavement analysis and design can be achieved based on proper incorporation with mechanistic approaches.

Reducing Impact of Heavy Truck Traffic on Service Life of Bridge Structures

PI: Dr. Alzore Zaitmarzani, Endowed University Professor, University of Nebraska-Lincoln

DESCRIPTION: Heavy truck traffic increases expansion joints and pushes debris into the joints causing extensive damages. This study envisions an innovative system that will completely eliminate expansion joints.

BENEFITS: The proposed system will eliminate the safety risk associated with road closure, and result in significant saving over long period of time.

Simulation and Evaluation of a Cable-to-Cable Attachment for High-Tension, Cable Barriers Placed in Medians along Freight Transportation Systems

PI: Dr. Robert Bielenberg, Associate Professor, University of Nebraska-Lincoln

DESCRIPTION: Linear assets, traffic lights, and highway billboards can be hard to physically access, and information files that were captured previously may be inaccurate. Local Departments of Transportation and Departments of Roads are investigating technologies that will assist in solving this asset inventory problem. The focus of this project is to evaluate the feasibility of utilizing Radio Frequency Identification (RFID) as a means of gathering, verifying, and storing information.

BENEFITS: This project will extend the relationship between the Nebraska Department of Roads, the university, and the Departments of Transportation in other states. This project will support students who are currently engaged in the research, as well as provide positive marketing for NDOR along with other transportation initiatives that support future funding.
2010 MATC Research Projects

Kansas State University Projects

Characteristics and Contributory Causes Related to Large Truck Crashes - Phase II
PI: Dr. Surananda Dissanayake, Associate Professor, Kansas State University

DESCRIPTION: In order to improve the safety of the overall surface transportation system, each of the critical areas needs to be addressed separately with more focused attention. Statistics clearly show that large truck crashes contribute significantly to an increased percentage of high severity crashes. It is therefore important for the highway safety community to identify the characteristics and contributory causes related to large truck crashes. During the first phase of this study, fatal crash data from the Fatality Analysis Reporting System database are used to achieve that objective. In this second phase, the study will analyze truck crashes of all severity levels with the intention of identifying factors contributing to increased severity of truck crashes, which could not be achieved by analyzing fatal crashes alone.

BENEFITS: Upon completion of the project, the characteristics and contributory causes related to increased severities of large truck-related crashes will be identified, which will in turn be used to recommend countermeasure ideas to reduce severities and focus areas needing particular attention for improving the safety situation of truck related crashes.

Determining the Stresses in Steel Railroad-Track Rails Due To Frequent Movements using Near-Contact Laser-Speckle
PI: Dr. Robert Peterman, Professor, Kansas State University

DESCRIPTION: The ability to accurately determine the existing stresses in railroad track rails is extremely valuable when assessing the condition of an existing railroad line. This is especially important for routes that pass through Kansas and Nebraska transporting heavily loaded coal-carrying cars from Wyoming's Powder River Basin. This project focuses on the extension of a non-contact strain measurement technique for use on steel rails as a means of determining the stresses in the rails under heavy freight movements.

BENEFITS: The specific outcome will be the extension and optimization of the laser-speckle strain measurement technique for use on steel rails, and the establishment of the procedures necessary to determine the corresponding stresses in the rails. Upon the successful completion of this project, the laser-speckle device will be demonstrated and will provide key information that can be used to make decisions about track maintenance and the impact of heavy freight movements along the rails.

Missouri University of Science & Technology Projects

Crash Analysis in MoDoT I-64 Closure Project
PI: Dr. Hojung Baik, Assistant Professor, Missouri University of Science & Technology
Co-PI: Dr. Glihnam Bham, Assistant Professor, Missouri University of Science & Technology

DESCRIPTION: For the I-64 reconstruction project, MoDOT has been reconstructing approximately 10 miles of the highway since January 2008. Reconstruction is being carried out in multiple stages at different sections of the Highway, but during each stage, all roadways within the specified section are completely closed. Roadway closures prompted traffic safety engineers to question: "Could closing the roadways possibly contribute to accidents?" Furthermore, if noticeable changes exist in the number and types of accidents, are there new patterns emerging? This study aims to answer these questions by examining crash data before and after the roadway closures, and providing scientific explanations for any relevant findings.

Missouri University of Science & Technology Projects

I270/1-255 Variable Speed Limit Study
PI: Dr. Glihnam Bham, Assistant Professor, Missouri University of Science & Technology

DESCRIPTION: This research project will determine the effectiveness of the Variable Speed Limit (VSL) system on I-270/I-255 corridor in St. Louis County, Missouri.

BENEFITS: The potential benefit of the study is to find measurable indications of success with the system. The purported benefits of the VSL system include improvement in the traffic flow, speed harmonization and vehicle safety. The desired outcome from the study is a report on findings with recommendations for improvements.

University of Kansas Projects

Enhanced Sustainability of Railroad Ballast
PI: Dr. Robert Parsons, Associate Professor, University of Kansas
Co-PI: Dr. Jie Han, Associate Professor, University of Kansas

DESCRIPTION: Railroads require continuous supplies of crushed stone for use as ballast to maintain tracks. Under the repeated loading of rail traffic, this stone is degraded through crushing and this damage is compounded by the upward migration of fines from subgrades below. This poses a significant challenge for the rail industry. This study will examine the potential benefits of using new ballast and ballast alternatives to ensure the safe and smooth operation of our nation’s transportation structures.

The proposed research will focus on the design, characterization, integration, and demonstration of the triple-sensor monitoring system. Two reinforced concrete (RC) blocks will be used to test and demonstrate the feasibility of the above monitoring system towards practical applications.

BENEFITS: The proposed research will lead to the development of a comprehensive distributed corrosion monitoring system that provides important information on corrosion, corrosion environment and its implication on structural health and safety. Such information is critical for the assessment of corrosion-induced structural deterioration. In turn, timely preventive actions can be taken against a catastrophic failure in order to ensure the safe and smooth operation of our nation’s transportation structures.

The proposed study will focus on the design, characterization, integration, and demonstration of the triple-sensor monitoring system. Two reinforced concrete (RC) blocks will be used to test and demonstrate the feasibility of the above monitoring system towards practical applications.

BENEFITS: The proposed research will lead to the development of a comprehensive distributed corrosion monitoring system that provides important information on corrosion, corrosion environment and its implication on structural health and safety. Such information is critical for the assessment of corrosion-induced structural deterioration. In turn, timely preventive actions can be taken against a catastrophic failure in order to ensure the safe and smooth operation of our nation’s transportation structures.

The proposed study will focus on the design, characterization, integration, and demonstration of the triple-sensor monitoring system. Two reinforced concrete (RC) blocks will be used to test and demonstrate the feasibility of the above monitoring system towards practical applications.

BENEFITS: The proposed research will lead to the development of a comprehensive distributed corrosion monitoring system that provides important information on corrosion, corrosion environment and its implication on structural health and safety. Such information is critical for the assessment of corrosion-induced structural deterioration. In turn, timely preventive actions can be taken against a catastrophic failure in order to ensure the safe and smooth operation of our nation’s transportation structures.
2010 MATC Research Projects

Improving the Long-Range Tracking Algorithm for use in Tracking Long-Haul Trucks using Cellular Data

PI: Dr. Steven Schrock, Assistant Professor, University of Kansas

DESCRIPTION: Previous research has shown that it is technically possible to estimate the extent that heavy trucks will travel from a specific facility, such as a rail-track intermodal facility, based solely on the remote tracking of these vehicles using cellular telephone position data. The use of cellular tracking data to determine travel times along highway corridors is well-developed, but, in other areas, the entire process is contingent on cellular coverage. In order to properly track freight departing from a facility a different approach is needed. An effective tracking process must be able to track a vehicle for hours or days depending on the truck’s ultimate destination, as well as the ability to differentiate between freight-hauling trucks and other non-freight vehicles (e.g., cars). The latter is necessary in order to spend effort only tracking vehicles of interest. In previous research, this aspect of the tracking process was developed ad-hoc, and may not have been an optimal technical solution. This research effort is focused on improving both the ability to differentiate between freight and non-freight traffic as well as improving the capacity to determine when the tracked trucks have reached their destination.

BENEFITS: This research will improve on the ability to determine the extent of freight traffic on the highway and from specific businesses, such as rail-track intermodal facilities.

Modeling Truck Speed in the Upstream of Two-Lane Highway Work Zones: Implications on Reducing Truck-Related Crashes in Work Zones

PI: Dr. Yong Bai, Associate Professor, University of Kansas

Co-PI’s: Dr. Steven Schrock, Assistant Professor, University of Kansas; Dr. Thomas Mulinazzi, Professor, University of Kansas

DESCRIPTION: Truck-related crashes constitute a major safety concern for government agencies, the transportation industry, and the traveling public. Due to rising needs in highway maintenance and construction, the number of work zones is increasing throughout the United States, and, simultaneously, freight movement using trucks is augmented nationwide. Developing effective safety countermeasures to reduce the truck-related crashes is a major challenge that the government agencies and transportation industry face. The main objective of the proposed research project is to model the truck speeds in the upstream of two-lane highway work zones.

BENEFITS: Understanding actual truck speed and speed deviation will help traffic engineers to better design work zone traffic control, thus avoiding truck-related crashes and improving safety for construction workers and drivers.

The University of Iowa Projects

Automated Erosion System to Protect Highway Bridge Crossings at Abutments

PI: Dr. Thanos Papamichalopoulos, Professor, University of Iowa

DESCRIPTION: Conventional monitoring methods of erosion of bank soils and removal of abutment fill material have difficulty capturing the exact time of the event. This type of monitoring provides only net measurements that have occurred since the previous sampling. Moreover, these methods are laborious and expensive, which often leads to under-sampling. This pilot study will develop a protocol for monitoring erosion near bridge abutments using innovative technology, Photo-Electric Erosion Pins (PEEPs), and a test study near the U.S. Highway 956 bridge crossing over the Iowa River in Johnson County. PEEPs provide automatic and continuous monitoring of localized erosion especially in areas in which channel surveying and/or installation of erosion pins are difficult. The primary goal of this pilot study is to develop a protocol for monitoring erosion near bridge abutments using innovative technology.

BENEFITS: This project will provide continuous rates of bank erosion at a highly-traveled, but threatened, Iowa bridge crossing. The results will identify key hydrological and climatic conditions leading to failure near bridge abutments. The primary products for this project include a thorough and well-illustrated operational manual for local engineers describing an innovative monitoring procedure for continuous, automated evaluations of bank erosion via a new instrument (Photo-Electric Erosion Pins).

Performance Measures of Warm Asphalt Mixtures for Safe and Reliable Freight Transportation (Phase 2: Evaluation of Friction and Raveling Characteristics of Warm Mix Asphalt Mixtures with Anti-stripping Agents)

PI: Dr. Hoshi, Associate Professor, University of Iowa

Co-PI: Dr. Yongjoo Kim, Research Associate, University of Iowa

DESCRIPTION: It is anticipated that more highway pavements will be constructed using warm mix asphalt (WMA) mixtures in order to reduce carbon dioxide emission while achieving the longer performance life due to the significantly reduced oxidation of asphalt. During the phase 1 study, six commercially available WMA products were evaluated in the laboratory: Advera WMA, Asphalt-mix, CECABASE RT®, Evotherm JL, Redset WMX and Sasobit®. Based on the laboratory test results obtained from the phase 1 study, it was found that these WMA mixtures were susceptible to moisture damage. Therefore, it is critical to consider anti-stripping agents for WMA mixtures with the end goal of using it in highways with heavy traffic and high tire pressures. Using the control WMA mixture and the control HMA mixture, characteristics of friction and unravelling will be evaluated and compared to determine which mixture can accommodate high-pressure tires on high-traffic highways.

BENEFITS: The main product anticipated from this research is the safe and reliable WMA mixtures with a WMA additive and an anti-stripping agent. Upon completion of the proposed phase 2 study, the most appropriate WMA additive and anti-stripping agent will be identified. This WMA mixture with a resistance to moisture damage, skidding, and unravelling. This innovation would be very useful for all pavement engineers who are interested in utilizing the WMA pavement under a heavy traffic with a high tire pressure.

Improving Freight Fire Safety: Experimental Testing and Computer Modeling to Further Development of Mist-controlling Additives for Fire Mitigation

PI: Dr. Albert Ratner, Assistant Professor, University of Iowa

DESCRIPTION: This project will continue to develop the science and technology required to implement fuel additives that improve fire safety for trucks and trains. The polymer-based fuel additives reduce fuel misting in accidents, and thereby reduce the chance of fire. Current project work includes both experimental testing and computer simulation.

BENEFITS: Being able to characterize and classify additive behavior will enable faster and less expensive development of better polymers, thereby bringing a fire reducing polymer into service quicker.

[Image: High-speed image of a diesel drop impact]

Conventional monitoring methods of erosion of bank soils and removal of abutment fill material have difficulty capturing the exact time of the event. This type of monitoring provides only net measurements that have occurred since the previous sampling. Moreover, these methods are laborious and expensive, which often leads to under-sampling. This pilot study will develop a protocol for monitoring erosion near bridge abutments using innovative technology, Photo-Electric Erosion Pins (PEEPs), and a test study near the U.S. Highway 956 bridge crossing over the Iowa River in Johnson County. PEEPs provide automatic and continuous monitoring of localized erosion especially in areas in which channel surveying and/or installation of erosion pins are difficult. The primary goal of this pilot study is to develop a protocol for monitoring erosion near bridge abutments using innovative technology.

BENEFITS: This project will provide continuous rates of bank erosion at a highly-traveled, but threatened, Iowa bridge crossing. The results will identify key hydrological and climatic conditions leading to failure near bridge abutments. The primary products for this project include a thorough and well-illustrated operational manual for local engineers describing an innovative monitoring procedure for continuous, automated evaluations of bank erosion via a new instrument (Photo-Electric Erosion Pins).

[Image: High-speed image of a diesel drop impact]
MATC Advisory Board Members

Dr. Judy Perkins
Chair and Department Head, Department of Civil and Environmental Engineering, Prairie View A&M University

Mr. Richard Reiser
Executive Vice President and General Counsel, Werner Enterprises, Inc.

Mr. David Sehrt
Senior Vice President, Ingram Barge Lines

Mr. Mark Stiles
Senior Vice President, Trinity Industries Inc.

Mr. E. Dean Carlson
Former Executive Director, FHWA; Former Secretary of Transportation, Kansas

Mr. David Connell
Vice President, Engineering, Union Pacific Railroad

Mr. John Craig
Vice President, HDR Engineering, Inc.

Mr. Michael Flanigon
Director, Office of Technology, Office of Research, Demonstration and Innovation, Federal Transit Administration

Mr. Monty Fredrickson
Director, State Engineer, Nebraska Department of Roads

Dr. Ray Krammes
Technical Director, Research and Development, Turner-Fairbank Highway Research Center

Dr. Elizabeth “Libby” Jones
Associate Professor, Civil Engineering Associate Director, Mid-America Transportation Center University of Nebraska-Lincoln Phone: (402) 554-3869 • ejones1@unl.edu

Dr. Genda Chen
Professor, Civil, Architectural and Environmental Engineering Associate Director, Mid-America Transportation Center Missouri University of Science and Technology Phone: (573) 884-4462 • gchen@mst.edu

Dr. Tom Mulinazzi
Professor, Civil, Environmental and Architectural Engineering Associate Director, Mid-America Transportation Center University of Kansas Phone: (785) 864-2928 • tommy@ku.edu

Dr. Judy Perkins
Chair and Department Head, Department of Civil and Environmental Engineering, Prairie View A&M University

Mr. Richard Reiser
Executive Vice President and General Counsel, Werner Enterprises, Inc.

Dr. Elizabeth “Libby” Jones
Associate Professor, Civil Engineering Associate Director, Mid-America Transportation Center University of Nebraska-Lincoln Phone: (402) 554-3869 • ejones1@unl.edu

Mr. David Sehrt
Senior Vice President, Ingram Barge Lines

Mr. Mark Stiles
Senior Vice President, Trinity Industries Inc.

Mr. E. Dean Carlson
Former Executive Director, FHWA; Former Secretary of Transportation, Kansas

Mr. David Connell
Vice President, Engineering, Union Pacific Railroad

Mr. John Craig
Vice President, HDR Engineering, Inc.

Mr. Michael Flanigon
Director, Office of Technology, Office of Research, Demonstration and Innovation, Federal Transit Administration

Mr. Monty Fredrickson
Director, State Engineer, Nebraska Department of Roads

Dr. Ray Krammes
Technical Director, Research and Development, Turner-Fairbank Highway Research Center

Dr. Elizabeth “Libby” Jones
Associate Professor, Civil Engineering Associate Director, Mid-America Transportation Center University of Nebraska-Lincoln Phone: (402) 554-3869 • ejones1@unl.edu

Dr. Genda Chen
Professor, Civil, Architectural and Environmental Engineering Associate Director, Mid-America Transportation Center Missouri University of Science and Technology Phone: (573) 884-4462 • gchen@mst.edu

Dr. Tom Mulinazzi
Professor, Civil, Environmental and Architectural Engineering Associate Director, Mid-America Transportation Center University of Kansas Phone: (785) 864-2928 • tommy@ku.edu

MATC Associate Directors

Mr. Ed Trout
Chairman, American Trucking Association; President, Cornhusker Trucking, Cornhusker Motor Lines, Omaha

Mr. Robert VanderClute
Senior Vice President, Safety and Operations, Association of American Railroads

Mr. Joseph Wearing
Division Administrator, Nebraska Division, Federal Highway Administration

Mr. David Connell
Vice President, Engineering, Union Pacific Railroad

Mr. John Craig
Vice President, HDR Engineering, Inc.

Mr. Michael Flanigon
Director, Office of Technology, Office of Research, Demonstration and Innovation, Federal Transit Administration

Mr. Monty Fredrickson
Director, State Engineer, Nebraska Department of Roads

Dr. Ray Krammes
Technical Director, Research and Development, Turner-Fairbank Highway Research Center

Dr. Elizabeth “Libby” Jones
Associate Professor, Civil Engineering Associate Director, Mid-America Transportation Center University of Nebraska-Lincoln Phone: (402) 554-3869 • ejones1@unl.edu

Dr. Genda Chen
Professor, Civil, Architectural and Environmental Engineering Associate Director, Mid-America Transportation Center Missouri University of Science and Technology Phone: (573) 341-4462 • gchen@mst.edu

Dr. Tom Mulinazzi
Professor, Civil, Environmental and Architectural Engineering Associate Director, Mid-America Transportation Center University of Kansas Phone: (785) 864-2928 • tommy@ku.edu

Dr. Mustaque Hossain
Professor, Civil Engineering and Public Policy Center Associate Director, Mid-America Transportation Center Kansas State University Phone: (785) 532-1376 • musth@k-state.edu

Dr. Paul Hanley
Assistant Professor, Civil & Environmental Engineering and Public Policy Center Associate Director, Mid-America Transportation Center University of Iowa Phone: (319) 335-8137 • paul-hanley@uiowa.edu

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Monty Fredrickson
Director, State Engineer, Nebraska Department of Roads

Dr. Ray Krammes
Technical Director, Research and Development, Turner-Fairbank Highway Research Center

Dr. Elizabeth “Libby” Jones
Associate Professor, Civil Engineering Associate Director, Mid-America Transportation Center University of Nebraska-Lincoln Phone: (402) 554-3869 • ejones1@unl.edu

Dr. Genda Chen
Professor, Civil, Architectural and Environmental Engineering Associate Director, Mid-America Transportation Center Missouri University of Science and Technology Phone: (573) 341-4462 • gchen@mst.edu

Dr. Tom Mulinazzi
Professor, Civil, Environmental and Architectural Engineering Associate Director, Mid-America Transportation Center University of Kansas Phone: (785) 864-2928 • tommy@ku.edu

Dr. Mustaque Hossain
Professor, Civil Engineering and Public Policy Center Associate Director, Mid-America Transportation Center Kansas State University Phone: (785) 532-1376 • musth@k-state.edu

Dr. Paul Hanley
Assistant Professor, Civil & Environmental Engineering and Public Policy Center Associate Director, Mid-America Transportation Center University of Iowa Phone: (319) 335-8137 • paul-hanley@uiowa.edu

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Monty Fredrickson
Director, State Engineer, Nebraska Department of Roads

Dr. Ray Krammes
Technical Director, Research and Development, Turner-Fairbank Highway Research Center

Dr. Elizabeth “Libby” Jones
Associate Professor, Civil Engineering Associate Director, Mid-America Transportation Center University of Nebraska-Lincoln Phone: (402) 554-3869 • ejones1@unl.edu

Dr. Genda Chen
Professor, Civil, Architectural and Environmental Engineering Associate Director, Mid-America Transportation Center Missouri University of Science and Technology Phone: (573) 341-4462 • gchen@mst.edu

Dr. Tom Mulinazzi
Professor, Civil, Environmental and Architectural Engineering Associate Director, Mid-America Transportation Center University of Kansas Phone: (785) 864-2928 • tommy@ku.edu

Dr. Mustaque Hossain
Professor, Civil Engineering and Public Policy Center Associate Director, Mid-America Transportation Center Kansas State University Phone: (785) 532-1376 • musth@k-state.edu

Dr. Paul Hanley
Assistant Professor, Civil & Environmental Engineering and Public Policy Center Associate Director, Mid-America Transportation Center University of Iowa Phone: (319) 335-8137 • paul-hanley@uiowa.edu

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Monty Fredrickson
Director, State Engineer, Nebraska Department of Roads

Dr. Ray Krammes
Technical Director, Research and Development, Turner-Fairbank Highway Research Center

Dr. Elizabeth “Libby” Jones
Associate Professor, Civil Engineering Associate Director, Mid-America Transportation Center University of Nebraska-Lincoln Phone: (402) 554-3869 • ejones1@unl.edu

Dr. Genda Chen
Professor, Civil, Architectural and Environmental Engineering Associate Director, Mid-America Transportation Center Missouri University of Science and Technology Phone: (573) 341-4462 • gchen@mst.edu

Dr. Tom Mulinazzi
Professor, Civil, Environmental and Architectural Engineering Associate Director, Mid-America Transportation Center University of Kansas Phone: (785) 864-2928 • tommy@ku.edu

Dr. Mustaque Hossain
Professor, Civil Engineering and Public Policy Center Associate Director, Mid-America Transportation Center Kansas State University Phone: (785) 532-1376 • musth@k-state.edu

Dr. Paul Hanley
Assistant Professor, Civil & Environmental Engineering and Public Policy Center Associate Director, Mid-America Transportation Center University of Iowa Phone: (319) 335-8137 • paul-hanley@uiowa.edu

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Monty Fredrickson
Director, State Engineer, Nebraska Department of Roads

Dr. Ray Krammes
Technical Director, Research and Development, Turner-Fairbank Highway Research Center

Dr. Elizabeth “Libby” Jones
Associate Professor, Civil Engineering Associate Director, Mid-America Transportation Center University of Nebraska-Lincoln Phone: (402) 554-3869 • ejones1@unl.edu

Dr. Genda Chen
Professor, Civil, Architectural and Environmental Engineering Associate Director, Mid-America Transportation Center Missouri University of Science and Technology Phone: (573) 341-4462 • gchen@mst.edu

Dr. Tom Mulinazzi
Professor, Civil, Environmental and Architectural Engineering Associate Director, Mid-America Transportation Center University of Kansas Phone: (785) 864-2928 • tommy@ku.edu

Dr. Mustaque Hossain
Professor, Civil Engineering and Public Policy Center Associate Director, Mid-America Transportation Center Kansas State University Phone: (785) 532-1376 • musth@k-state.edu

Dr. Paul Hanley
Assistant Professor, Civil & Environmental Engineering and Public Policy Center Associate Director, Mid-America Transportation Center University of Iowa Phone: (319) 335-8137 • paul-hanley@uiowa.edu

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.

Mr. Abbas Mohaddes
President and Chief Executive Officer, Iteris, Inc.
Maurice D. Cavitt: MATC Student Spotlight

Maurice D. Cavitt is a Ph.D. student at the University of Nebraska-Lincoln in the Department of Industrial and Management System Engineering (IMSE). He holds a B.S.E.E. degree from Prairie View A&M University, a Historically Black College and University (HBCU) located near Houston, Texas. Cavitt has been selected as the 2010 MATC Doctoral Student of the Year, an award which includes a $1,000 scholarship and $750 in travel funds to attend the 2010 Transportation Research Board meeting in Washington DC.

"It is an honor and a great privilege to be recognized as the Mid-American Transportation Center (MATC) Doctoral student of the year. It is an awesome feeling to be acknowledged for my research efforts and it was exciting to be able to attend the 89th Annual Transportation Research Board (TRB) Conference. Being invited to the same conference as other great researchers and intellectual minds allowed me to network and see great research," states Cavitt. He is thankful to his professors and family for inspiring him to achieve this award: "I would like to thank my professor and mentor Dr. Erick C. Jones for allowing me to work with his innovative research and projects to gain valuable research experience that will equip me with the necessary tools to be a great professor and researcher as himself. I would like to thank my family and friends for believing in me the most when I doubted myself at times for this I am greatly thankful."

Dr. Erick C. Jones, one of Cavitt’s professors, speaks on behalf of the RFID Supply Chain Logistics Lab in sending his compliments and congratulations on “starting off on a great note.” Likewise, Dr. Judy Perkins, from Prairie View A &M University, extends her congratulations “on behalf of the entire PVAMU crew” and encourages him to “keep up the good work.”